Numerical Schemes for the
Hamilton-Jacobi and Level Set Equations
on Triangulated Domains

Timothy J. Barth *
Information Sciences Directorate
NASA Ames Research Center

James A. Sethian
Department of Mathematics
University of California, Berkeley

Abstract

Borrowing from techniques developed for conservation law equa-
tions, numerical schemes which discretize the Hamilton-Jacobi (H-J),
level set, and Eikonal equations on triangulated domains are presented.
The first scheme is a provably monotone discretization for certain forms
of the H-J equations. Unfortunately, the basic scheme lacks proper
Lipschitz continuity of the numerical Hamiltonian. By employing a
“virtual” edge flipping technique, Lipschitz continuity of the numerical
flux is restored on acute triangulations. Next, schemes are introduced
and developed based on the weaker concept of positive coefficient ap-
proximations for homogeneous Hamiltonians. These schemes possess a
discrete maximum principle on arbitrary triangulations and naturally
exhibit proper Lipschitz continuity of the numerical Hamiltonian. Fi-
nally, a class of Petrov-Galerkin approximations are considered. These
schemes are stabilized via a least-squares bilinear form. The Petrov-
Galerkin schemes do not possess a discrete maximum principle but gen-
eralize to high order accuracy. Discretization of the level set equation
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also requires the numerical approximation of a mean curvature term.
A simple lumped-Galerkin approximation is presented and analyzed
using maximum principle analysis. The use of unstructured meshes
permits several forms of mesh adaptation which have been incorpo-
rated into numerical examples. These numerical examples include dis-
cretizations of convex and nonconvex forms of the H-J equation, the
Eikonal equation, and the level set equation.

1 Introduction

In this paper, three related equations are considered

1. The first-order Hamilton-Jacobi (H-J) equation

ut + H(z,Vu) =0 (r,t) € A x RT (1)
2. The general level set equation

up + F(z,Vu, k)|Vu| =0 (z,t) e QA x RT (2)

3. The Eikonal equation

F(z) |Vu| = £1, F(z) >0, z € (3)

for a domain Q C R?. In the level set equation, x denotes the mean cur-
vature of the (d-1)-dimensional level set surface and is calculated from the

divergence formula
Vu

o 4
The connection between H-J equations and conservation law equations in

one space dimension is well known. Let u denote an entropy solution of the
conservation law equation

=V

ug + f(u)g =0 (r,t) e R xRT (5)
u(z,0) = up(z).

Substituting u = v, yields a related H-J equation

vt + f(vg) =0 (z,1) €RxRT (6)
v(z,0) = vo(x).



Both equations admit generalized solutions [17] [18] [10] and have related
viscosity-limit solutions: if v is a viscosity solution of the H-J equation (5)
then u is a entropy solution of the conservation law (6). This connection
between conservation laws and H-J equations has been exploited in the de-
sign of numerical schemes for the H-J equations using finite-difference and
generalizations of Godunov’s method on structured meshes [22] [11][27] [28].
Of both theoretical and practical interest are monotone schemes for the H-J
equations [22] [11] [19] since it can be shown that these schemes converge to
the correct viscosity-limit solutions. Higher order accurate TVD and ENO
extensions have also been demonstrated but it still remains an open problem
to show convergence to viscosity-limit solutions in space dimension d > 2.

Our motivation for studying these equations stems, in part, from prob-
lems involving evolving interfaces. The general level set equation given above
describes the motion of an interface advancing under a speed F in its normal
direction. This perspective, which views the front as an implicitly defined
embedded hypersurface, together with approximations based on finite dif-
ference formulations, was introduced by Osher and Sethian [22], based in
part on the theory of evolving curves and surfaces developed earlier in [26],
as well as [27].

The resulting “level set method” has been applied in large number of
areas, including problems that arise in geometry, fluid mechanics, computer
vision, and manufacturing processes, see Sethian [30]. Numerous advances
have been made to the original approach, including the adaptive narrow
band methodology [2], the Fast Marching Method for solving the static
Eikonal equation [29], and the variational level set method [33]. For details
and summaries of level set techniques, see [28, 30].

Previous simulations using level set techniques have focussed on finite
difference approximations on fixed, logically rectangular meshes. Such tech-
niques have the advantage of high degrees of accuracy, and programming
ease. However, in some situations, a triangulated domain/finite element
type approximation is desired. Three reasons include:

e Adaptive mesh refinement: Adaptive mesh refinement is straight-
forward in a triangulated setting, due to the ability to subdivide el-
ements while avoiding nonconforming approximations, i.e. “hanging
nodes”. Thus, in problems where one wants additional resolution, not
just around the interface, but in response to other variables as well,
this approach is valuable. While adaptive level set methods have been
built in rectangular finite difference settings, see [21], such methods,



especially in the presence of parabolic curvature terms have additional
complications.

e Interface-Fitted Coordinates: In certain moving interface prob-
lems, jump conditions across the boundary are critical to both the
solution of partial differential equations on either side of the interface
and to evaluating the speed of the interface. Interpolation of these
terms to neighboring grid elements can be delicate. In contrast, an
interface-fitted coordinate system often offers a straightforward way
to build these terms. In a triangulated setting, construction of a lo-
cal interface-fitted set of nodes, similar to mesh adaptivity, can be a
considerable advantage.

e Propagating Interfaces on Manifolds: In some applications, one
wants to compute the motion of interfaces on non-planar manifolds;
for example, on the surface of a body. In this case, a triangulated
domain may be much more readily available on the surface than an
orthogonal rectilinear coordinate system.

In the remaining sections, numerical schemes are developed for the Hamilton-

Jacobi, Eikonal, and level set equations on triangulated domains in R¢. Qur
strategy is to first develop a monotone numerical approximation for the H-J
equations and then to relax the strict order preserving monotonicity con-
dition in favor of a weaker positivity condition. This follows closely the
development process taken for conservation law equations. In addition, an
important class of Petrov-Galerkin approximations is considered which have
no monotonicity or positivity principle but are capable of achieving high
order accuracy. In later sections, the newly developed schemes are further
extended to include the additional parabolic terms often present in level set
equations. Finally, numerical calculations on uniform and adapted meshes
are shown to demonstrate the accuracy and generality of the schemes. Specif-
ically, the paper is organized in the following order of topics:

1. Numerical Fundamentals for H-J equations. The concepts of
consistency and monotonicity of the prototype numerical Hamiltonian
are defined and discussed.

2. Monotone Schemes. A simple monotone updating formula is devel-
oped for simplices. Lipschitz continuity of the numerical Hamiltonian
is improved using a virtual edge flipping strategy.



10.

11.

Positive Coefficient Schemes. The weaker concept of positive coef-
ficient schemes is introduced. A simple, compact scheme is developed
for the H-J equation with homogeneous Hamiltonian.

. Petrov-Galerkin Schemes. A Galerkin approximation with least-

squares stabilization is developed for the H-J equation with homoge-
neous Hamiltonian. A discontinuity capturing operator is added to
resolve slope-discontinuous solutions.

Time Integration Strategies. Time integration schemes for the
positive coefficient and Petrov-Galerkin schemes are discussed. Mono-
tonicity and positivity preserving one- and two-stage Runge-Kutta
schemes are analyzed. Two simple space-time formulations for the
Petrov-Galerkin scheme are developed.

Numerical Implementations. Algorithmic implementations for the
explicit positive coefficient and Petrov-Galerkin schemes are given.

Numerical Accuracy. Accuracy of the positive coefficient and Petrov-
Galerkin schemes is numerically evaluated for smooth and non-smooth
solutions of the H-J equation.

Schemes for Curvature Flow. A lumped-Galerkin approximation
for mean curvature is considered and analyzed using maximum prin-
ciple analysis.

Mesh Adaptivity. Conformal and Steiner adaptivity strategies are
defined and applied to H-J calculations.

Numerical Calculation of Curvature Flow on Adaptive Meshes.
Grayson’s 2D curvature flow problem is solved using conformal adap-
tation. Several 3D minimal surface calculations are presented.

Nonconvex Hamiltonians. The performance of numerical schemes
for nonconvex Hamiltonian problems arising in semiconductor etching
and deposition is qualitatively evaluated.



2 Numerical Fundamentals for the H-J and Level
Set Equations on Triangulated Domains

Consider the following specialized form of the H-J equation (1)

us + H(Vu) = f(z) (r,t) e A x RT
u(z,0) = uo(z) (7)

so that the Eikonal equation (3) can also be modeled by dropping the time
derivative term. Let 7 denote a triangulation set in R¢, T = {1, Ty, . .. T}
composed of simplices covering Q such that 7 = UTj, T; NT; = 0 for ¢ # j.
We will also refer to the vertex set V = {vy,vo,... ,UM}. Unless otherwise
stated, the solution on 7 is approximated using a standard piecewise linear
finite element subspace denoted by V.. For (z,t) € V} x RT, the numer-
ical solution at vertex v; at a time nAt is denoted by u]. Next, consider
numerical approximations of Eqn. (7) of the form

u;”l = uj — At H;(Vul, Vug, ..., Vuly, z) (8)

with
>k (H(Vu) - f(2))

.
1L o meas(Ty)

Ty

Hj(Vui, Vug, ..., Vu,z) = ) az- >0 (9)

where (-)7; = [7,(-) dQ. As will be shown, ol = aj(Vuy) are bounded, posi-
tive weighting coefficients computed at a simplex 7; which contribute to the
numerical Hamiltonian H at vertex v;. In developing numerical discretiza-
tions, we follow Crandall and Lions [11], Osher and Sethian [22], and Abgrall
[1] in proposing design criterion that reflect properties of the underlying H-J
differential equation (without source term):

1. (Counsistency). If u(z,t) varies linearly in space and time, consistency
dictates that the numerical scheme (8) must yield exact evolution:

u(z;, nAt) = ug(x;) — nAt H(Vug). (10)

In our formulations this design criteria is always satisfied, since the
assumed form of the numerical Hamiltonian (9) satisfies

H(Vu,Vu,...,Vu) = H(Vu) (11)

and it can be shown that at least one nonzero aé- exists for each interior
vertex v; location.



2. (Monotonicity). Crandall and Lions [11] have previously shown that
consistent, monotone schemes for the H-J equations are stable and
converge to the correct viscosity limit solution. Monotonicity as used
here can be defined in terms of order preservation, i.e.

u” > " implies  u"t! > "L (12)
For self-maps of the form

u?“ = u; — At Gj(u"), (13)

it is sufficient to show that

8G,
(9ui

oG;\ ', oy
<0 and 0<SAt< | ==, Vi je{l,2,..,[VILi# )

J
(14)
for the scheme to be monotone. In later sections, this design criterion
is relaxed in favor of the weaker positivity condition:

v
Wit =l — At > Bi(u") (u}f —uf) (15)
i=1,i#j
with
| v\
Bi>0 and 0<At<| > g , j=12,...,[V]. (16)
i=1,i£j

Both the monotone and positive schemes satisfy a global discrete max-
imum principle

3 n n+1 n .
min  wu; <wu;" < max wu, YVi=12,...,|V 17
=12,V 0 T Ta=n2,, v i=52..,V| (17)

as well as the local maximum principle

“min u?ﬁu?"’lg.max up, Vji=1,2,...,|V] (18)
1€8UpPDP; i€supp;
where supp; denotes the index support set for the discretized scheme
at vertex v;.

In the following sections, a procedure is described for calculating the aé-

coefficients so that monotonicity and/or positivity properties are obtained
for specific Hamiltonians.



3 Development of Numerical Schemes for Approx-
imating H-J Equations

3.1 A Monotone Scheme for H(Vu) Hamiltonians

Consider a d-dimensional simplex 7' with linearly varying u(x) uniquely de-
fined by vertex values u; and linear basis functions N;(z) satisfying N;(z;) =
d+1

= ;Ni(fﬂ) .- (19)

The gradient Vu in simplex T is readily computed in terms of gradients of

the basis functions
d+1

Vu= Z VNZ Us; - (20)
i=1
To gain a better geometric intuition, the gradient formula is rewritten in
terms of inward pointing normals 7'; scaled by the measure of the (d — 1)-
facet opposite vertex v; in the simplex, i.e.

1 d+1
VI e (21)
Note that
d+1
Y Wi=0 (22)
i=1

due to the scaling of normals and the fact that the surface of a simplex
is closed. It is also useful to define the gradient of the Hamiltonian with
respect to the gradient arguments

VH=| oy, |- (23)

Next form (H(Vu))T = [, H(Vu) d9, the Hamiltonian integrated in a
simplex, and differentiate with respect to the simplex unknowns
a(H(vu))T 1

o :E(VH'Wi)’ i=1,2,...,d+ 1. (24)
7



Due to the scaling of normals and the constancy of H(Vwu) within a linear

simplex
a+1 9( H(Vu))

T _

—u = 0. (25)

i=1 i

When combined with the monotonicity conditions (14), certain orientations

of VH relative to the geometry of simplex 1" give rise to monotone updates

as shown in Fig. 1 for a single isolated two-dimensional simplex.

Figure 1: Typical 2-D simplex 7; showing inward pointing normals, index
convention, and sector demarcation.

VH-anO,VH-nkSO:

ntl _yn A 2
i e meas(T) (26)
VH -n; <0,VH -n;, <0:
H(Vu”))
ntl — gn 7( T 2
Y 43 t meas(T") (27)
VH-’I’LZ' SO,VH-’I’LJ' SO:
H(Vu™)
uptt = uft — At ( ) (28)



More generally, several simplices may contribute to the update at a single
vertex. In this case the generalized numerical Hamiltonian formula (9) can
be used 7
B (),
ug-H' =uj — At 7 L (29)
Yy aé meas(7T;)

where

., zeT,  (30)

oo [1 VH <0, k=12....d+1,j#k
J 0 otherwise

Observe that consistency is achieved, given the form of the numerical Hamil-
tonian, if it can be shown that there exists at least one simplex producing
a nonzero aé- coefficient when wu(z) varies linear over the entire support of
the scheme. From Fig. 2 it is clear that this must always happen. Con-
sider a constant gradient vector VH located at a vertex vy to be updated.
By simply tracing backwards along the gradient vector into a simplex T,
surrounding vp, a simplex has been found which contributes a nonzero ag’.

Unfortunately, the scheme suffers from a serious flaw. The numerical Hamil-

k

Figure 2: Triangles surrounding vy with linearly varying u(z). Isolevels of
constant u(z) are shown as dotted lines and the arrow denotes the constant
gradient vector VH at vertex vy.

tonian fails to be a Lipschitz continuous function. This non-Lipschitzian
behavior is shown in Fig. 3a-b. The numerical Hamiltonian varies discon-
tinuously with certain small perturbations in its arguments. This can greatly
reduce the accuracy of solutions. This will be demonstrated in a numeri-
cal example given later. To overcome this problem, one might consider an
edge flipping strategy as illustrated in Fig. 3c. By flipping the position of

10
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Fig. 3a. Two vy updates. Fig. 3b. No vy update. Fig. 3c. One vy update.

Figure 3: Non-Lipschitzian behavior of the monotone scheme with changing
gradient direction (left and middle figures). Diagonal flipping maneuver to
improve Lipschitz continuity of the numerical Hamiltonian.

the diagonal for the triangle pair, vertex vy obtains a single update with a
numerical Hamiltonian which now varies continuously with small perturba-
tions in data. In principle, this edge flipping strategy could be implemented
in a computer code by testing continuity of the numerical Hamiltonian and
edge flipping when appropriate. Rather than implementing this elaborate

Us

Figure 4: Virtual edge flipping strategy. Given the triangle T'(vi,v9,v3)
with vertex solution values u;, u2, and us, additional solution values uj,
uj, u} and positions are computed based on (virtual) diagonal flipped edges
e(vs,v4), e(v1,vs), e(va, vg)-

procedure, a virtual edge flipping strategy has been developed as depicted
in Fig. 4. Referring to this figure, consider the triangle T'(vi,v9,v3) and
the edge e(vy,v2). If the triangle pair (T'(v1,ve,v3), T (ve,v1,v4)) adjacent
to e(vi,v2) forms a convex quadrilateral, one can consider the possibility

11



of swapping the diagonal position to form e(vs,vs). Given that the solu-
tion unknowns are associated with vertices of the mesh, a unique piecewise
continuous linear representation of the solution can be associated with the
two new triangles T"(vy,v4,v3) and T"(vs, v4,v2). With respect to the orig-
inal triangle T'(v1,v2,v3), these two new linear functions can be encoded
by simply computing the solution u} and its location e(vs,v4) N e(vy,v2).
Next, the general monotone update formula (29) is used for each triangle
in its original configuration as well as in diagonally flipped positions. In

*

Figure 5: Level set solutions obtained without (left) and with (right) virtual
edge flipping.

Fig. 4, three possible updates at v; can be computed that originate from
T'(v1,v2,v3) as well as T'(v1, va,v3) and T'(vy,v3,v3) with similar permuta-
tions for other vertices of T'. Figure 5 shows a sample level set calculation
described in full detail in a later section. The correct solution consists of
Euclidean distance contours from the innermost star-shaped figure. The left
figure shows the baseline monotone scheme without virtual edge flipping.
Several noticeable defects are present in the numerical solution originating
from non-Lipschitz behavior of the numerical Hamiltonian. The right figure
shows the same test problem computed with the monotone update scheme
with virtual edge flipping. The level set contours now approximate the true
solution quite well. Note that edge flipping can be problematic since it re-
quires that adjacent triangle pairs form convex quadrilaterals. For example,

12



the triangle pair shown in Fig. 6 forms a nonconvex quadrilateral, hence the
Lipschitz discontinuous Hamiltonian cannot be repaired by edge flipping.
Clearly, this suggests the sufficient but not necessary condition for edge flip-

k k

Fig. 6a. Two vy updates. Fig. 6b. No vy update.

Figure 6: Non-Lipschitzian behavior of the monotone scheme which cannot
be repaired by edge flipping.

ping that the triangulation be acute. The technique also extends to higher
space dimensions, albeit with more update possibilities for each simplex.

The edge flipping technique required for the monotone scheme intro-
duces an undesirable aspect to the scheme since adjacent elements must
be interrogated. When combined with the geometric convexity constraints
associated with triangle pairs, we are motivated to seek alternate discretiza-
tion design criteria applicable to general triangulations with computations
which remain local to a simplex. In the next section, a strategy is developed
which achieves these goals.

3.2 A Positive Scheme for Homogeneous H(Vu) on Triangu-
lated Domains

To gain Lipschitz continuity of the numerical Hamiltonian without resorting
to edge flipping, the condition of monotonicity is relaxed in favor of a pos-
itivity condition. In this new framework, it will be sufficient to show that
the d + 1 coefficients aé- for the simplex 7} are continuous functions of the
gradient vector Vu. For accuracy reasons aé- should also be bounded and
positive. Note that since monotone schemes depend fundamentally on the

quantity
o(H(Vw) 1
N = VT _“yYH-m
Ou; alV s

13



in principle any new positive scheme should also depend on this quantity.
This would ensure that monotone updates are recovered whenever possible.

Recall Euler’s theorem for homogeneous functions, if F(u,v) : R x R —
R is homogeneous of degree p then F(tu,tv) = tPF(u,v) and

pF(u,v) = —u+ —v. (31)

Our attention focuses on Hamiltonians H (Vu) which are homogeneous func-
tions of degree p in Vu. In this case, Euler’s theorem yields the following
relation for a simplex 7' in R%

_log . o, — 2
(H(W))T = VH-Vu= ;::(VH 73 )u; (32)
Next define
VH. @}
K; =
=T (33

so that (32) can be expressed in the following canonical form

d+1 d+1

(H(vu))T = Zj Kiu;  with > K;=0. (34)

=1
Once written in canonical form, we can draw upon a number of well known
techniques for constructing positive coefficient schemes for conservation laws
due to Roe [23] [24] and Deconinck et al. [13]. The basis for these schemes
is the following straightforward manipulation of the canonical form

d+1 d+1 d+1

}E:Bﬁuiiz j{:l<IUj4—j£:}{jui
i=1 j=1 i=1
d+1 Va1 d+1 d+1 Va1 d+1
- (Bm) (Ex)Eru- (Ex) (S7) S
=1 =1 j=1 =1 j=1 =1
d+1 d+1 a1
_ Skt (zm) > K (g~ ) (35)
1=1 =1

In deriving this formula, the useful identity E’Hl Zdﬂ K ++Zd+1 K T =
0 has been used. Equation (35) motivates a decomposmon of the Hamllto-
nian in a simplex 7" of the form

d+1

(H(vu))T = Z 5 (36)

14



with
d+1 —1gi1
6Z~:Ki+ (ZK;F) ZKj—(uj—ui). (37)
=1 j=1

When written in matrix form

01 . Uy

02 - - U9

. = + : (38)
Od+1 - 1 \ugi

it becomes clear that the decomposition produces a sign pattern useful in
constructing a positive coefficient schemes satisfying Eqn. (15). To do so
simply let

. 5
of = ————— (39)
(e,
and insert into our prototype numerical Hamiltonian
7Tl 1
ho (AVw), g4
Hj(Vul,Vug,...,VU|7-|) = T = T .
21— o; meas(T;) 21— o meas(T;)
(40)

Since the coefficient terms depend continuously on VH and the simplex
geometry, Lipschitz continuity of the numerical Hamiltonian is obtained.
Note that by construction Z;-lj aé- = 1. It is not difficult to show that for

certain Hamiltonians (e.g. H(Vu) = |Vu|P) and non-obtuse triangulations,
aé- are nonnegative and hence bounded. In this case the conditions for a

positive coefficient scheme are obtained:

u;-H'l =u; — At % ,B;(u") (u] —uy') (41)
i=1,i#£j
with
v !
Bi>0 and 0<At< ( > ﬁj) L i=12,...,|V]. (42
i=1,i#j

For general (obtuse) triangulations and homogeneous Hamiltonians, addi-
tional nonlinearity must be introduced into the formulation so that a positive

15



coefficient scheme is obtained. Deconinck [13] in the context of conservation
law equation discretization, suggests the a simple nonlinear modification of
ozé- to obtain a positive coefficient scheme for general triangulations:

max(0, o
65 = gy ( J)l- (43)
Zk:1 maX(O, ak)

The inclusion of this modification produces a robust scheme for the H-J

_

/

Figure 7: Level set solution obtained using monotone scheme with virtual
edge flipping (left) and positive coefficient scheme (right).

equations (with source term), i.e.

s a (H(Ve) - f(2))
L & meas(T))

Hj(VUl,V'UIQ,...’V'U,'T"x) — T (44)

Note that this nonlinear modification still permits the scheme to be written
in the positive coefficient form (41). Repeating the example calculation of
the previous section shown in Fig. 4, Fig. 7 compares the monotone scheme
with virtual edge flipping and the present positive coefficient scheme. The
resulting solutions compare favorably. Note that the positive coefficient
scheme requires approximately 20% less computing time owing to the local
computation and simplified updating. Accuracy of this scheme is evaluated
in a later section.

16



3.3 A Petrov-Galerkin Formulation
Next, consider a stabilized finite element approximation for the H-J equation
ut + H(Vu) = 0. (45)
The Hamiltonian H(Vu) is assumed to homogeneous of degree p
H(Vu) =p ! VH-Vu (46)

for positive p. The formulation considered here is inspired by the stabi-
lized Petrov-Galerkin methods developed for conservation law equations,
see Johnson [16] for a detailed discussion. Let P denote k-th order interpo-
lation polynomials in each simplex 7' and D" = Q x I" the space-time slab
with I" = [t7,t"*!]. For a given positive integer k define the usual trial
space

Vi = [P P € CO(DM), v" |purn € PR(T x I") VT € T} (47)

i.e. V" is the space of continuous piecewise polynomial functions of degree
k for the space-time slab D". Note that between space-time slabs V" is
allowed to jump discontinuously, i.e. u”(z,t") # u”(z,¢7). Next define the
inflow /outflow portions of the boundary I:

'y =T\T'_={zel:n(z)-VH >0} (48)

From this, the following stabilized finite element approximation with weakly
imposed boundary conditions can be stated:

Find u” € V! such that for all w" € V?

B(Uha'wh)gal + B(uhawh)ls + B(uhawh)bc =0 (49)

B(u,w)ga :/In/nw(ut—i—H(Vu)) dQ dt
B(u,w);s = /I /{gwt+p_1(VH-Vw)) 7 (i +p~ (VH - Vu)) dQdt
B(u,w)bcz/l w(g—u)p~ ' (VH -n)dl dt

+/Qw(t1)(u(t1) —u(t?)) d9 (50)

17



for 7 > 0 and VH = VH(Vu) everywhere in (50). The motivation for the
least-squares stabilization B(u,w);s comes from looking at the variation of
the quadratic potential

P(u) :/ —T <ut+p (VH-VU)) dD (51)
pn 2
for constant VH
. d
0P = (}1_1)1% 573(?1 + ow) = B(u,w);s, Yw € V. (52)

Note that B(u,w);s removes energy from the system since
B(u,u);s >0 (53)

and

Removing the assumption of constant VH in the calculation of the first
variation yields

0P = B(u,w);s+p * /Q(ut—kp*l(VH-Vu)) 7 (VIw Hess(H) Vu) dQ (55)

where Hess(H) denotes the Hessian matrix containing second derivatives of
H. Note the appearance of a new term in the first variation statement. If
H(V) is homogeneous of degree p, it can be shown that

Hess(H) Vu=p (p—1) VH (56)
so that

6P = Bluw)is + (p—1) [ (w+p {(VH-Vu) 7 (VH - Yu) dS. (57)

Although similar to the standard least-squares term, the time derivative
in this new term makes the sign of the associated energy undetermined.
Fortunately, for many physically relevant Hamiltonians of interest, H(Vu)
is homogeneous of degree one (p = 1) in which case the second integral term
vanishes identically and Eqn.(51) is recovered. For this reason, we defer
further consideration of this new term.

18



Our choice of the parameter 7 is motivated from standard practice for

conservation laws:
2\2 (2VHN\2)
(&) (50 9

with the At term omitted for discretizations of the Eikonal equation. The
next result shows that for any 7 > 0, the least-squares term removes energy
from the system.

Energy Balance: The Petrov-Galerkin scheme (50) exhibits the following
energy balance:
N—1 N—1

1
—||u(tN)||Q+ D luh) = u@)IG + Y V7w + H(Vu) |Gy n
n=0 n=0
1
+22//up |VH -n| dx dt+ = Z/n/ (V-VH) dz dt
) TeT
P //Q[VH] nda dt = ollut)[;
e€E,z(e

-I-Z/ / ug p~t |VH -n| dz dt
=0/ JIn
(59)

Proof: To construct the energy at tY = t(l+Z,]:r:_01 I" let w = w and
evaluate the various integrals. The least-squares stabilization term
produces a pure quadratic form and will not be discussed further.
Combining the first term

/Q/n uuy dt dx = %[)[uz(tn+1) —u2(t1)] dz (60)

and the jump integral

/Qu(t’}r)[() (t”]d:c—2/[ut" w(t™)]? d 4= /[u
(

yields

/Q/nuut dt da:+/ﬂu(tﬁ)[u(t1)—u(tﬁ)] do = 2/ ()

61)

+ 5/9[u "+ —

19

u?(t")] dz

u(t™)]? dz

W (t")] dx
(62)



for a single time slab. Next rewrite the spatial integral term
1
/ /u(VH-Vu) dz dt — 5/ /(VH-vu2) dz dt
n JQ n.JQ
1
= = H - V2
; Z/n/T(v vu?) dz d(63)

TeT
From Green’s theorem
/ VH -Vu?dz = / w *(V-VH)dz+ | w?(VH-n)dz (64)
T T aT
so that

/n/ﬂu(VH-Vu)dxdt — /In/ W2(VH -n) dz dt

-

PN

= —Z uw*(V-VH) dz dt
?TET mJr

D> /In/eUQ[VH]-nd:cdt

e€E,x(e)¢l

1
- —/ /u2|VH-n|dxdt
2 /i Jr

where [VH]-n = (VHr — VHr) - n if the normal vector for edge
e points from 77 to Tg. Inserting the finite dimensional subspace

u and summing over time slabs yields the energy balance equation
(59). m

This result, while perhaps of limited interest, shows how the least-squares
term, boundary conditions, and time-discontinuous solution representation
each improve energy stability of the scheme. In the trivial case VH =
constant, two terms drop out and the energy balance formally bounds energy
at time tV in terms of inflow boundary data and initial data at time ¢ .

3.4 The Petrov-Galerkin Discontinuity Capturing Operator

Although least-square stabilization is sufficient for many problems of inter-
est, the operator does not control solution oscillations as do monotone and
positive coefficient discretizations. Consequently, small solution oscillations
are sometimes present near slope discontinuities. To remove these oscilla-
tions, a discontinuity capturing operator is employed that is similar to that
commonly used for conservation law discretizations:

Odc h |’U,t + H(VU)‘
(lue|? + [H(Vu) |9 + e9) !/

B(u,w)ge = /Ty(u)(Vw -Vu) dz, v= (65)
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In this formula, € is a small computer dependent parameter and ¢ a param-
eter with typical values ¢ € {1,2,00}. Observe that this form of discon-
tinuity capturing operator can be viewed as a form of nonlinear artificial
viscosity which retains the weighted residual property of the basic finite
element method, i.e. the viscosity coefficient vanishes when the exact solu-
tion is inserted into the discontinuity capturing operator. More generally,
the viscosity coefficient is small when the Hamilton-Jacobi equation is well-
approximated in an element. The mesh width A is included in the defini-
tion so that the overall accuracy of the Galerkin least-squares method for
smooth solutions is retained. In a later section, the numerical calculation

*

Figure 8: Level set solution obtained using monotone scheme with virtual
edge flipping (left) and Petrov-Galerkin scheme (right).

of nonconvex Hamiltonians arising in etching and deposition modeling is
considered. In this context, discontinuity capturing operators such as (65)
have proven invaluable for accurately computing these solutions. For com-
pleteness, the example calculation shown in Figs. 4 and 7 is repeated for the
Petrov-Galerkin discretization with discontinuity capturing term (o4, = .1).
Figure 8 compares the monotone scheme with edge flipping and the present
Petrov-Galerkin scheme. The solutions are visually indistinguishable.
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4 Time Integration Schemes

The H-J and level set equations both require accurate time integration
schemes. Ideally, these time integration schemes should not destroy the
monotonicity or positivity properties of the spatial discretization under some
CFL-like restriction on the time step parameter. Specifically, single- and
two-stage Runge-Kutta time advancement schemes designed for this pur-
pose are considered. Note that in solving the Eikonal equation, a fictitious
time derivative is added to the equation so that steady state solutions are
then sought. While not of optimal complexity when compared to the fast
marching methods developed for the static Eikonal equation on Cartesian
meshes [29], it does permit a valid study of the spatial accuracy of these
discretizations.

Next, time discretization schemes for the Petrov-Galerkin scheme are
considered. The formulation permits piecewise constant in time elements.
When combined with mass lumping, a simple explicit scheme is produced.
Higher order accuracy in time is naturally achieved using piecewise discon-
tinuous polynomial approximations in time. This results in couple systems
of equations for each space-time slab.

4.1 Explicit Time Stepping for Monotone and Positive Co-
efficient Schemes

4.1.1 Single-Stage Explicit Time Integration

The analysis is rather straightforward for the single-stage integration scheme.
Recall the prototype self-map

u;-H'l = uj — At Gj(u"). (66)

This is a O(At) accurate integration in time for the equation us+ G(u) = 0.
As discussed earlier, strict order preservation yields the following CFL-like
restriction on At

el

-1
0§At§<a ) , Vie{1,2,...,|V|}. (67)

w0

J
The positive coefficient scheme follow a similar argument. When the scheme
is written in prototype coefficient form

\4
= - AL S ) @ ), (69
i=1,i£j
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positivity of coefficients in time, i.e. that u}”’l is a positive weighted com-

bination of u”, yields the following CFL-like time step restriction similar to
the monotone scheme:

VI '

i=Litj

Finally, observe that these CFL-like conditions for monotonicity and /or pos-
itivity both imply stability in a maximum norm since both imply a global
discrete maximum principle of the form

min _ u? <u"' < max w

Yoo Vi=12,...,|V] 70
1=1,2,...,|V| J T i=1,2,.,|V| ¢ J | | ( )

4.1.2 Two-Stage Time Integration

It is not difficult to improve the time integration accuracy to O(At?) using
the following well-known two-stage integration scheme which uses the single-
stage scheme as a basic building block:

uTE =y — At Gy(u)
1 1
u;ﬁ—l - E(U? + U;H—I/Q) a EAt Gi(un+1/2)a i=1,2,..,|V|

(71)

Furthermore, the next lemma proves that this time integration scheme pre-
serves positive self-maps under a CFL-like condition equal to the single-
stage time integration. This again implies stability in a maximum norm.
This scheme has been analyzed in the context of total variation diminishing
(TVD) preservation by Shu and Osher [32].

Lemma: If G(u) : RV — RVl is a positive self-map which commutes
with the addition of scalars, i.e. G(u +w) = G(u) + w then the 2-stage time
integration scheme Eqn. (71) with G(u) = u— At G(u) is a positive self-map
which commutes with the addition of scalars.

Proof: The time integration scheme is of the form

um = %(u" +G(G(u™))) (72)

where G(u) = u — At G(u) so our attention focuses on the compo-
sition term G(G(u)). The analysis is straightforward when G(u) :
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RV - RVl is an order preserving self-map. From order preserva-
tion, it follows that

u > v implies G(u) > G(v) implies G(G(u)) > G(G(v)) (73)

so that G(G(u)) is an order preserving self-map and consequently
2(u+G(G(u))) is also an order preserving self-map. If G(u) commutes
with the addition of constant scalars, i.e. G(u + w) = G(u) + w then

G(G(u+w)) = G(G(u) +w) = G(G(u)) + w.

From results found in Crandall and Tartar [12], it follows that G(u),
G(G(u)), and 3(u + G(G(u))) are all nonexpansive. More generally,
consider the weaker concept of positive self-maps

Gu) =Tw)u, T):RYVI RV Tw)>0. (74)
Considering the composition term
G(G(u)) = T(T(w)u)T (u)u. (75)

it is clear that T(T(u)u)T(u) > 0 and using previous arguments
G(G(u+w)) = G(G(u))+w. From this the stated lemma is concluded
since $(u"™ + G(G(u™))) is also a positive self-map which commutes
with the addition of scalars. B

4.2 Space-Time Petrov-Galerkin Approximation

The Petrov-Galerkin formulation readily permits tensor product space-time
discretization. Let N;(z) denote the simplex basis functions as described in
Sec. 3.1. Consider the following space-time approximations:

Piecewise Constant In Time =z € T,t € [ti,t’frl] In this case, the time
derivatives u; = wy = 0 vanish in slab interiors and evolution takes place via
the space-time slab jump integral

[ ) e —uer) do (76)

with u(t?) = u™*! and u(t") = u™. This produces the following scheme

n+1“n+1 —u" n+1 -1 n+1
/w Lt an + /(w +p {(VH - V) H(Vu")dQ
Q Q

+ w"tt (g —u"t) p~t (VH -n) dT = 0.
r_
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To regain consistency, as defined in Sec. 2, the jump integral weighting term
is perturbed by 7p~!(VH - Vw) thereby producing the following consistent
approximation

n+1 -1 n+1 ut — " n+1
(w4 p H(VH - Vo)) | S 4+ H(Vu") | Q)
Q At

+ . w" (g —u") p7! (VH -n) dT = 0.
Note that this scheme still requires the implicit inversion of a matrix despite
our expectation that the order of accuracy in time is O(At). This form
motivates a simple explicit scheme achieved by shifting w™*! and »"*! back
to w™ and u™ everywhere except for the u"*! term appearing in the time
derivative approximation.
un—|—1 —

/Q (w" +p~ (VH - ur)) (T n H(Vu")) a0

+ w" (g —u™) p~' (VH -n) dT = 0.
r_
When combined with standard mass lumping, an explicit time stepping
scheme similar to the positive coefficient scheme is obtained. Full algorithmic
details are given later.

Piecewise Linear In Time z € T\t € [t", "]

> t_ti n+1 t_tr-ll- ~n

w(z,t) = 3 Nj(z) (Ttuj - )uj) (77)
j=1

(z,) iN()(t"51 P+ (1 - Sy )

w\zr, = iz —_— W — wes
2 At Vi A )%

as depicted in Fig. 9. The use of time-discontinuous approximations effec-
tively decouples successive space-time slabs. Even so, for a given space-time
slab, both 47 and u;-H'l are basic coupled unknowns. In addition, the re-
quired integrals are nonlinear functions of these unknowns. This motivates
the use of a locally linearized form of the Petrov-Galerkin scheme. Using
midpoint quadrature formula to evaluate Petrov-Galerkin integrals, let @ de-
note a reference state at the quadrature point location. Define VH = V H (@)

and 7 = 7(u) and the following bilinear forms:

B(u,w;ﬂ)gal:/ /w(ut —i—p_lVF-Vu) dQ) dt
InJQ
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Figure 9: One-dimensional space-time slab depicting multiple data values
from " to t}.

Blu,wiah = [ f(wi+p  (VE- V) 7 (w0 +p~ (VE - Va)) d21S)

so that the desired solution is obtained as @ — wu. The following iterative
solution procedure, consisting of m inner iterations, is used for updating
each space-time slab

1. Initialize w = u™.
2. Fors=1,m

Given the reference state u, solve the linearized Petrov-Galerkin dis-
cretization thereby obtaining u™t5/™ and gnts/m—1

Update the linearize state © = ﬂ(u’”‘s/m, ﬂ”“/m*l)
EndFor

In practice, 2 or 3 inner iterations are usually required for convergence.
While we do not recommend this as a final strategy for solving the Petrov-
Galerkin system, it is sufficient for evaluating the merits of the discretization.

5 Implementation of Explicit Positive and Petrov-
Galerkin Schemes for the Level Set Equation

5.1 The Explicit Positive Coefficient Scheme for the Level
Set Equation

Consider the level set equation

¢+ F(V,7)|Ve| = f(z), z€R (79)
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discretized using the positive coefficient scheme described in Sec. 3.2. This
algorithm can be implemented using the following algorithmic steps:

(1) Initialize ¢f = w; =0, i = 1,2,...,[V].
(2) Foreach T €T, i=1,2,...,d+1

Endfor

local

Nz(.’E) = {NZ(JJ) € Pl | NZ(.'E]) = 5ija j = 1,2,...,d+ ]., T € T}

T — simplex(z1,Z2, ..., Z4+1)
F=——_ | F d
meas(7T) /T (Ve) da

- 1
= meas(T') /Tf(a:) de
; = d meas(T) VN;

d+1
V¢ = VN; ¢
j=1
K, — FV¢ @;
d |V
d+1
5= Ki

=1

d+1 —lgs1
56— K (z K) S K (6 — )
=1 =1

_ max(0,0¢;/0¢)
b max (0,6¢1/69)
¢F = ¢* +a; (6¢ — f meas(T))

w; = w; + &; meas(T')

Single-Stage Integration

(3) Foreach v; € V

¢ )"
ot = gr — At G

2

Endfor
Two-Stage Integration

(3) Foreach v; € V

n
2 wi

1/2
;k)n+/

+1/2
¢?+1:%(¢?+¢? /)—% (d:unT/Z

Endfor
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5.2 The Explicit Petrov-Galerkin Scheme for the Level Set
Equation

Once again consider the level set equation
b+ F(V,2)|Vg| = f(z), =€R™ (80)

The Petrov-Galerkin implementation follows closely the implementation for
the positive coefficient scheme:

(1) Initialize ¢; =w; =0, i =1,2,...,|V].
(2) Foreach T €T, i=1,2,...,d+1

local

T — simplex(z1,x2,...,ZT4+1)
- 1
F= meas(T') /Tf(x) de
7; = d meas(T) VN;
d+1
V=) VN; ¢;
7j=1
K, = FV¢-7;
d [V
T=1(¢)
d+1
5p=> Ki
=1
B
@ =47 K

¢ = ¢" +a; (0¢ — f meas(T))

w; = w; + «; meas(T')

Endfor

Single-Stage Integration
(3) Foreach v; € V .
Bt = o - A G
Endfor
Two-Stage Integration
(3) Foreach v; € V
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¢n+l/2 _ qﬁ? At (%*T)Ln

2

2
1_1 nt+1/2y _ A¢ (95) /2
ot = er + g ) - 4t B
w
2

Endfor

5.3 Numerical Accuracy

To assess the accuracy of the various schemes described in previous sections,
the level set and Eikonal equations are discretized and solved for the problem
of computing the distance from a given curve.

e In the case of the level set equation, we start with a given curve as the
zero level set of the initial value u in a region {2 and evolve the time
dependent equation u; + |Vu| = 0.

e In the case of the Eikonal equation, we start with a given curve as a
boundary condition to the equation |Vu| = 1.

Two test problems are considered. The first computes the distance to a
convex curve, which then must be a smooth solution. The second computes
the distance to a nonconvex curve, which gives rise to non-smooth solutions.
Numerical calculations were carried out on a sequence of 4 meshes with
characteristic element size h successively decreased by factors of 2. In both
problems, an initial curve (z¢(0),yo(6)) is prescribed in terms of polar angle
0 such that the initial solution satisfies u(zg,yo,t) = 0. Next, the solution
is extended everywhere via a signed distance-squared function; this is done
so that the final solution is not trivially given by the initial data. The
discretized equations are then advanced in time using the 2-stage scheme
with At = h/2 even though second order accuracy in time is not generally
expected. During the course of the calculation, a crossing time solution
uc(x,y) is constructed which records the time at which the u(z,y,t) = 0
level set passes over a given mesh vertex. In practice a parabolic curve
fitting technique (in time) is used to obtain precise crossing times given the
solution at three successive time steps. For the test problems mentioned
below the crossing time solution is unique and valid only for the portion of
) exterior to the curve (z((6),y0(0)). To assess accuracy, the absolute error
in the crossing time solution is then measured in the Sobolev and L, norms
H' Ly and L.
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5.3.1 Problem 1A: Smooth Solutions to the H-J and Level Set
Equations

As a first example, the level set equation is solved starting from smooth
initial solution data corresponding to an oval. Exterior to the oval, the solu-
tion remains smooth for the entire calculation. Figure 10 shows the mesh
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Figure 10: Smooth Level Set Solns: Coarsest Mesh (left) and Crossing Time
Solution (right).
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Figure 11: Smooth Level Set Solns: Absolute crossing time solution error.
Positive coefficient scheme (left), explicit Petrov-Galerkin (middle), and im-
plicit Petrov-Galerkin (right).

and crossing time solution computed using the positive coefficient scheme.
Note that no crossing time solution exists interior to the specified oval curve.
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Graphs of the absolute crossing time error using the explicit positive coef-
ficient, explicit Petrov-Galerkin, and implicit Petrov-Galerkin schemes are
shown in Fig. 11. The two explicit schemes yield slightly less than first order
accuracy. In contrast, the implicit Petrov-Galerkin scheme yields full sec-
ond order accuracy in Lo and Lo, norms and first order accuracy in the H'
semi-norm. These are optimal convergence rates in these norms for linear
elements.

5.3.2 Problem 1B: Smooth Solutions to the Eikonal Equation

In this test problem, the crossing time solution from Problem 1A is now
computed as a field solution of the Eikonal equation. The mesh and
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field solution using the positive coefficient scheme are shown in Fig. 12.
The specified oval curve is now a boundary for the domain with imposed
boundary condition ¢ = 0. The Eikonal equation does not depend on time
so that the explicit and implicit Petrov-Galerkin schemes produce identical
discretizations. Consequently, absolute solution errors are graphed in Fig.
13 for the positive coefficient scheme and the Petrov-Galerkin scheme. Both
schemes perform optimally; second order accurate in Lo and Lo, and first
order accurate in an H' semi-norm.

5.3.3 Problem 2A: Non-Smooth Solutions to Level Set Equation

As a second example, the level set equation is solved starting from smooth
initial solution data corresponding to an star-shaped curve which remains
only Lipschitz smooth during time evolution. Figure 14 shows the mesh and
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Figure 14: Non-Smooth Level Set Solns.: Coarsest Mesh (left) and Crossing
Time Solution (right).

crossing time solution computed using the positive coefficient scheme. Note
the non-oscillatory resolution of the slope-discontinuous corner. Graphs for
absolute error in the crossing time solution are shown in Fig. 15. The
two explicit schemes again show slightly less than first order accuracy in
Lo and Lo, with further degradation in the H' semi-norm. The implicit
Petrov-Galerkin with discontinuity capturing term parameter o4, = .1 re-
tains second order accuracy in Lo, first order accuracy in L, and one-half
order accuracy in the H'! semi-norm.
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5.3.4 Problem 2B: Non-Smooth Solutions to Eikonal Eqn.

As a last test problem, the crossing time solution from Problem 2A is now
computed as a field solution of the Eikonal equation.
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Figure 16: Non-Smooth Eikonal Solns.: Coarsest Mesh (left) and Solution

(right).

shaped curve is now a boundary for the domain with imposed boundary
condition ¢ = 0. The mesh and field solution using the positive coefficient
scheme are shown in Fig. 16. Absolute solution errors are graphed in Fig. 17
for the positive coefficient scheme and the Petrov-Galerkin scheme. Again,
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both the positive coefficient and Petrov-Galerkin schemes with discontinuity
capturing term perform very similarly. Second order accuracy is obtain in
Lo, first order accuracy in Ly, and one-half order accuracy in the H! semi-
norm.
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6 Schemes for Curvature Flow

Many physically relevant problems are accurately modeled by the level set
equation with added second order curvature flow term x |V¢)| for the form

¢i + (F(VP) —er) [Vo| =0 (81)

for locally constant e. Recall that  is the mean curvature of the level set
function ¢
Vo
K=V —70.
Vgl

In discretizing the curvature term, we follow the same reasoning given by
Osher and Sethian [22], namely that numerical stability will be dictated by
the highest order differential term. This motivates a study of the following
model equation on Q C R? with boundary I':

(82)

Vé

th—CV'W—O, .’L'EQ

¢($,0) = QSO(‘T)’ z €

d(z,t) = g(z), rel (83)

which can be restated in variational form. Let S" denote the space of
finite-dimensional functions with bounded energy, [ |Vu| dz, satisfying the
Dirichlet boundary condition and V" the same space of finite-dimensional
functions with bounded energy which satisfy homogeneous boundary condi-
tions. Given these spaces, find ¢ € S, such that for all w € V"

Vw -V B
/Qu)utda:—l-e/Q Vgl dx =0
with
¢($,0) = ¢0(‘T)’ z €
qﬁ(.’E,t) = g(x), zel. (84)

Examining equation (84) with linear elements, yields the following simple
lemma.

Lemma: The model equation (84) with C linear triangular elements
VP C 8" € P1(T) exhibits a discrete maximum principle at steady-state for
arbitrary solution data if the triangulation is non-obtuse.
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Proof: Consider a single arbitrary simplex T' = simplex(z1, 2, T3)
and the discretization in terms of the local linear shape functions

Ni(z), () = Y3 Nj(z)¢j, = €T

Vw - Ve 3.3 VN, - VN,
————dzr = w; ¢p; ————2meas(T). (85)
I 22 b gy

After some straightforward manipulation, the following global dis-
cretization with time term set to zero is obtained

\4

Vw- Vo B . o
/QW dw_z-:zlwzjezAfin (i —j) =0 (86)

where N; denotes the set of vertices adjacent to vertex v; with weights

v [T T,
V¢l Vel

1 lcotan(azj) cotan(aéj)]

2| Vel T Vel (87)

AL

VN, !
Discretization weight geometry for the edge e(v;, v;)

Since the discretization formula must hold for arbitrary values of w;
at interior vertices, it can be concluded that for all interior vertices
(% ]

> W) (¢ — ¢5) =0. (88)

JEN;
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Written in this form, a discrete maximum principle exists if all
weights are nonnegative, Wj > 0, since u; is then a convex com-
bination of adjacent neighbors, i.e.

>jen; Wi b

= - (89)
o Yen W)
so that
ing; < d; < .
min ¢; < ¢i < maxd; (90)

From Eqn. (87) it follows directly that a sufficient condition for
W; > 0 is that the triangulation be non-obtuse. B

Our strategy for the general level set curvature flow term

\V
Vel V- ﬁ (91)

is to obtain a pointwise estimate at each vertex v; of the form

D jeN; W; (uj — uq)
> ren; meas(T)

v
Vol V- S| % IV

(92)

where W; are the weights described earlier, N; denotes the triangle neighbor
set incident to v;, and (V¢); is the pointwise lumped-Galerkin approxima-

tion, i.e.
Yren; JrVu dz
(Ve)i = . (93)
Yren; meas(T)
This term then incorporates easily into the previously discussed explicit
schemes. We have not yet considered the addition of this term into the

implicit Petrov-Galerkin scheme.

7 Mesh Adaptivity

One of the central virtues of a triangulated domain formulation, as opposed
to a rectilinear framework, is the ease in implementing mesh adaptivity.
Mesh adaptation can either be part of the initial mesh construction, or can
occur dynamically as the solution evolves. Two basic adaptation strategies
have been considered: (1) conformal adaptation and (2) Steiner/Delaunay
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adaptation. The next two sections will elaborate on these techniques. As
examples of these techniques taken from level set computations, Fig. 18
shows three different uses of mesh adaptation for evolving front problems.
Fig. 18a shows conformal adaptation around the front itself; Fig. 18b shows
Steiner adaptation around regions of high curvature in the evolving front;
Fig. 18c shows interface conforming Steiner adaptation around regions of
high curvature in the evolving solution.

KRR
DaVEVAVAV.OE S

N VATNAY VYAV AT
SN X BN NS EASANAIRNIISL
N N R IR RER:
VAVAN ‘ — N7 VAVl| VSIS NS SOOI NEEDARR,
IMMA'" YA sl ORIERAOEE AORIROSIOINRIARDORALK R
AN R R G
S N

RO
TAY VAV oy
] 2l

A
St
SRR

5
RORSERS A KRS
SRS
ﬁ'g’i""""{g""
N v taV
KERN:
5

SN PO
PO i

5T 4 Lvavar
‘_

2>

X!
Yy
R

KB

Y

ALK

R

AVA‘ A
A

o

AR
KO
s
&
v
KA

3
s
PO
PO
0
A

XL
Ok
DA
XX
KIS
v

Py

1%
0

2

AVAY
3
£
XK

R

A
AVAYA

AV)

Xl

Ay

7\ ”
Rk
\/

SAAK

oy

SASK
RNERA
SRS

55D
NREREE
oL

RN
s

YATVS
WA

e
§
R
X
s
Q7

s

D

VAVt
AR

A 5
RERSASKIK]
X

)
o
A N)
RARERS
N
X5
X
R
Vavay

o
NS
OV
PRKIART
aY

rd

i
R
%,
A}
%)
ke
Y
5
<A
5
N[

i

Au:' ¥ VAV

va\WAvA'ﬁ
pVAYS

A"‘vﬁ{é‘%

it
55

S
N %
S

‘,
A
o
v
X7
%
K
17
s

S
KT
%74

5

7y

v
<7

X
A
s
R
X0
Av;V
08
K7
VV}
X
I
o

4
4
ar

v,

5
X
L
%
o

v,
a
A
&
v
YAy o
20
O
£

0y

N
RIS

AV
K2
%
<\
:
X
s
K7
2
S
o]
AV
X
V4

)

,

4
<]
o

N/
Xy v “

K
)
5
Tk
74
A

N
s
ok
VS
a”
AVa
X
20K
B
oK

VAVAY
o
2
%va
oy
pVa

<
S

(]
V4

s
A
S VAvaY, X
PR
DN\ YaViy  AVA VA
Yavaralhay,V)

SRR
£
5
V%%A
5

0
K

SYAVAY
VAV
X

&k
R
P

VAR

Kt

7

iV

v,
]
o

RSN A%lS AVAAVAVAYANNAVANZG)NAVAVAVAVAV NNATAVANAVAVATANZAV:Y
IV anSAvA A e %f;ﬁb‘g‘é T N gggg;

v)reca
ek
T

VAY
A
KK

X
\VA

OSSN REAN A

RS

ORRRKIAAKK

O

SRR 0e08
KRR
DA

P

v
KRR
%} K
KRS
&

>

i

50
AP
NS
RS
;VQ‘A

s
I

Wi
K

KPOKL
skd
S

P

VAV,
AN
y
g

KR
AN
K
ey

<
S
IVAVAY

N
%)

V4

Ay

NAZE
o
ISR
AN S
VAV 2 s

K
LaVAYAVAY vay
SRR
el
POSIROKRK
SR

4

POKDAA
K

A OSa
VAV,

v
T
K

Savl

wf"'

o
55
oy

KT

VAVATATQS
RN
AV4

X

VAVAVATS!
SRS
é} KRN

7
K
i
L

VAV
RS
SORDEAK
VA

AV

‘?Av
S
>
5
Ay
i
i
Dy

K7

S,

iy 4?:‘::? 0 R

AV S AP TAVAVSI

ARG

YRR
KBRS Ly

VAVQ X1 S
%

X

V.
e
IVave
N
<
%

AV

v
O
X
%:
o
&
;1
va,
A
7~
A

3

v
A0

kA
%
N

%
2
55
o
N
(Y
a4
72X
R
Z
X5
0%
)aVAVa
SAvAYs

VAV,
KX

\/
VAV S
0%
K7
2R
Xz
TAvaVa
-~
4}; 5
R
Val
A
VA
s VAY
4
S

OS
EDEN
%’A’A )
o
R
00
%)
>

X

KT

Y%
I~
ALY
\/

o
‘F

4
L
%)
A
N
<
O
4
%

AV
OO
R S SN

S
Ve

D
VAV
IR

£
\/

VAV
&
Zay
A
AR

N4
0
O
K
pVa
R
KOO
AR
AY)
Vavave,
vava¥l
AVAY

AR
3

SUOAVAVANTE Y
SRS

B
e

<]
K/
LK

X\

VAY)

[
N

v
g
2%

KT

Vv
&

o

5
i,
7

2

2
VAV4
<>V§
SN
R
i
&
T
£
P
SRR
\

o
PR
V%VAVA
)
SR

vay
A
4
0 vmﬁéﬁﬂm

<

o
A‘
AVAY

S

a

ISKRR

k7

Fig. 18c. Interface Conforming Adaptation.

Figure 18: Various mesh adaptation techniques for evolving interface prob-
lems.
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7.1 Conformal Adaptation

The term conformal adaptation comes from the fact that a two-dimensional
triangle can be divided into four sub-triangles, each having the same angles
as the original triangle. Using this idea, a natural two-step algorithm exists
to sub-divide any triangle. In step one, the selected triangle (shown in
light gray) is conformally sub-divided by connecting the midpoints of each
side (see 19). In step two, these side “hanging nodes” are then resolved by
connecting them to the far vertex. The result is again a triangulated grid
with no hanging nodes.

(a) Candidate triangle. (b) Conformal subdivision. (c) Resolution of subdivision.

Figure 19: Conformal refinement steps for a 2D triangle.

Algorithmically, one can proceed as follows. The initial grid is made
up of “parent” and “child” triangles; we insist that at no point will parent
triangles ever be removed. This grid is stored as a list of triangles; each
triangle contains a pointer to its parent, as well as to its children (which
are the first level subdivisions within that parent). Addition of triangles
corresponds to adding children to parents in the list. Removal of triangles
can easily occur by removing all children (and grandchildren, etc.) from the
list. This can easily be performed dynamically as the solution evolves.

The technique extends to three dimensions, see for example [20, 31],
although the method ceases to be angle preserving. In three dimensions, a
single tetrahedron is decomposed into eight sub-tetrahedron. The lack of
angle preservation introduces a stability question associated with repeated
application of refinement refinement, i.e. that angles do not degenerate too
quickly. It is known that stability is obtained if the shortest of two possible
interior edges is used in the 1:8 refinement. The handling of hanging nodes
requires 1:2 and 1:4 refinement as well.
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7.2 Steiner/Delaunay Adaptation

Definition: A Steiner triangulation algorithm is any triangulation algo-
rithm that adds additional sites to an existing triangulation to improve
some measure of grid quality, Bern and Epstein [6].

The Steiner/Delaunay adaptation technique exploits the well-known cir-
cumcircle/circumsphere characterization of unconstrained Delaunay trian-
gulations, i.e. that the circumcircle/circumsphere of any triangle/tetrahedron
does not contain any other vertex in the triangulation. A number of re-
searchers have independently discovered the benefits of inserting sites at
circumcenters of Delaunay triangles to refine the triangulation and improve
measures of grid quality, [7], [25]. For example in Fig. 20, the triangle
T(v1,v2,v3) is refined by adding a site at the circumcenter location and
reconfiguring edges using an edge flipping procedure to restore the Delau-
nay characterization. Most algorithms follow a procedure similar to that

AR EANN
| L7
& &

Figure 20: Steiner refinement: Site insertion at circumcenter location (left)
and edge reconfiguration (right).

proposed by Chew:
Algorithm: Steiner Triangulation and Adaptation, Chew [7]

1. Construct a constrained Delaunay triangulation of the boundary points
and edges.

2. Compute a measure of shape and size for each element. A triangle
passes only if: (1) it is well-shaped, i.e. the smallest angle is greater
than 30°, (2) it is well-sized, i.e. the triangle passes a user defined
size measure. Any sizing measure can be specified as long as it can
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be achieved by making the triangle smaller. Some sizing measures
might include solution adaptive gradients (properly scaled), solution
curvature, cell area, etc.

3. If all triangles pass then halt. Otherwise choose the largest triangle,
A, which fails and determine its circumcenter, c.

4. Traverse from A toward c until either a constraining boundary edge
is encountered or the triangle containing c is found.

5. If a triangle is found containing ¢ then insert ¢ into the triangulation
and proceed to Step 2.

6. If a boundary edge is encountered during the traversal then split the
boundary edge into halves and update the triangulation. Let [ be the
length of the new edges and consider the new vertex located on the
boundary. Delete each interior vertex of the triangulation which is
closer than [ to this boundary site. Proceed to Step 2.

Using this algorithm it is proven in [7, 8] that guaranteed-quality meshes
are obtained:

1. All angles in the triangulation lie between 30° and 120°. (Smaller
angles are required if boundary angles less that 30° are allowed).

2. All triangles will pass the user specified measure.

3. All boundary edge constraints will be preserved by the final triangu-
lation.

Within the context of the level set method, the interface can be treated as
a constraining boundary and Chew’s algorithm applied in a two-sided sense
since additional vertices may be placed on the interface which impacts the
triangulation on both sides of the interface. Note that circumcenter insertion
extends naturally to Delaunay triangulations in three space dimension al-
though the technique does not yield guaranteed angle bounds of any known

type.
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8 Example Curvature Flow Calculations

Grayson’s Problem
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to solving the following level set equation

(94)

qj)t - Iﬁ:|v¢| =0.
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Grayson’s Problem. Time evolution of simple closed curve with

curvature dependent speed.

Figure 21

As Figs. 2la-f demonstrate, the calculation eventually evolves to a convex
shape which eventually becomes a round point thereby verifying Grayson’s

theorem.
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8.2 Construction of Minimal Surfaces

One application of curvature flow is the construction of minimal surfaces.
The first application of level set methods to the construction of minimal
surfaces is due to Chopp [9]; his approach is as follows. Imagine a wire
frame, with the goal of constructing a minimal surface that passes through
that wire frame. One possible way to construct that minimal surface is to
start with any surface that passes through that wire frame, and allow that
surface to evolve under curvature flow, that is, with speed ¥ = —k, where
k is the curvature. If the surface remains attached to the wire frame as it
flows, the end limiting result will be a surface of minimal curvature.

Chopp employed a level set method on a Cartesian mesh, coupled to a
finite difference scheme to advance the level set equation. Chopp restricted
the movement of the zero level set so that it always remains attached to
the surface; since a rectangular coordinate system was used, considerable
care was applied to constructing interpolating boundary conditions between
the wire frame and the neighboring grid points in order to ensure that the
front remained “attached” to the frame as it evolved. In addition, this
internal boundary condition on the level set equation caused considerable
distortion in the gradient of the level set function around the zero level set; a
renormalization procedure was developed to circumvent this difficulty. The
advantage to using a level set method to construct minimal surfaces is that
one need not know in advance the final topology of the minimal surface;
breaking and splitting is handled automatically as the surface evolves from
its initial guess to the final state. For details, see [9].

/

Figure 22: Minimal Surfaces Constructed through Curvature Flow
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Using a triangular-node based approach to this problem yields the ad-
vantage that the triangular discretization can be arranged so that vertices
fall on the wire frame, thus automatically constraining the front.

Figure 22 shows the minimal surface that spans two rings, located less
than the critical distance apart. By lengthening the distance between the
rings, the minimal surface pinches off and separates into two disks spanning
the rings. Figure 23 shows the evolution of this sequence, starting from an
initial guess and evolving towards the final minimal surface state.

Q o
» o

Figure 23: Catenoid evolution through curvature flow undergoing change.
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9 Nonconvex Hamiltonians

Next, we study the performance of the newly developed schemes for noncon-
vex Hamiltonians which model ion-milling used in the etching of a material
surface during semiconductor manufacturing. In some problems, the rate at
which an interface is etched away depends on the angle of incidence between
the surface normal and the incoming beam. This yield function is often
empirically fit from experiment, and has been observed to cause such effects
as faceting at corners. These problems were studied extensively using level
set methods in [3, 4, 5], and the role of nonconvexity in the Hamiltonian was
discussed at length. Here, those experiments are repeated in a triangulated
setting using the nonconvex scheme discussed earlier.

Figure 24 shows etching profiles for various different yield curves. Note
that the last yield curve, Fig. 24d given by F(#) = 5 cos §—4 cos> 6, produces
the faceting discussed above.

~©) F(©)

Fig. 24a. F(0) = 1. Fig. 24b. F(6) = cos 6.

Figure 25 shows how various schemes capture the nonconvex profile. The
positive and explicit Petrov-Galerkin schemes exhibit the wiggles symp-
tomatic of the incorrect solution, see [3]. The explicit Petrov-Galerkin
scheme with discontinuity capturing correctly computes the faceting effects
for this problem. The implicit Petrov-Galerkin scheme also computes the
faceting effects on the upper etched surface but seems to produce unphysical
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F(6,0) F(0)

Fig. 24c. F(0,k) = cos 6 — .1k . Fig. 24d. F(0) = 5cosf —4cos® 0 .

Figure 24: Convex and Nonconvex Hamiltonians

faceting on the lower surface. This phenomena is not well-understood and
warrants further investigation.

p
Db
s

1l

Fig. 25a. Positive Scheme. Fig. 25b. Explicit Petrov-Galerkin.
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Fig. 25c. Exp. Petrov-Galerkin + D.C. Fig. 25d. Imp. Petrov-Galerkin + D.C.

Figure 25: Performance of various schemes for nonconvex etching problem.
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9.1 Etching and Deposition in Semiconductor Manufactur-
ing

In a series of papers [3, 4, 5], level set methods were developed and applied
to surface topography evolution in etching and deposition processes used in
semiconductor manufacturing. In these simulations, the ultimate speed of
the propagating front depends on such factors as the flux of material from the
source to the surface, visibility, material-dependent etch rates, re-sputtering
and re-emission from the surface, and surface diffusion. Those calculations
were performed using a fixed rectangular finite difference approximation
to the equations of motion, together with an adaptive mesh narrow band
technique to greatly ease the computational labor, see [2]. Here, the most
straightforward of those simulations has been repeated using a triangulated
domain scheme. The test geometry is a simple 3D contact well. The etching
law is the nonconvex ion milling law considered in the previous problem.
The explicit Petrov-Galerkin with discontinuity capturing term is used to
compute the numerical solution on the tetrahedral mesh. The sequence of

Figure 26: 3D Contact well etching evolution using nonconvex etching law.

figures from left to right and top to bottom show the time evolution of
the etched surface. The characteristic surface faceting associated with the
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nonconvex etch law is clearly seen. The calculation quality can be further
improved by using dynamic mesh adaptation.

10 Conclusions and Future Work

A general algorithmic approach has been developed for computing the so-
lutions of Hamilton-Jacobi and front propagation problems on triangulated
domains in two and three space dimensions. In later work, our plan is to
employ these techniques on interface problems where mesh adaptivity is
critical, and problems in which nodal points on the interface are needed
for accurate representation of internal boundary conditions, for example, in
some aspects of semiconductor manufacturing and materials sciences. This
work will be reported elsewhere.
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