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Abstract

The author has developed a new version of his Fortran multiprecision computation
system that is based on the Fortran-90 language. With this new approach, a translator
program is not required — translation of Fortran code for multiprecision is accomplished by
merely utilizing advanced features of Fortran-90, such as derived data types and operator
extensions. This approach results in more reliable translation and also permits program-
mers of multiprecision applications to utilize the full power of the Fortran-90 language.

Three multiprecision datatypes are supported in this system: multiprecision integer,
real and complex. All the usual Fortran conventions for mixed mode operations are sup-
ported, and many of the Fortran intrinsics, such as SIN, EXP and MOD, are supported with
multiprecision arguments.

This paper also briefly describes an interesting application of this software, wherein new
number-theoretic identities have been discovered by means of multiprecision computations.

Author’s address: NAS Applied Research Branch, NASA Ames Research Center, Mof-
fett Field, CA 94035-1000; dbailey@nas.nasa.gov.



1. Introduction

Readers may be familiar with the author’s previous multiprecision system [4], which
consists of the TRANSMP translator program and the MPFUN package of multiprecision
(MP) computation routines. Together they permit one to write straightforward Fortran-77
code that can be executed using an arbitrarily high level of numeric precision.

From its inception, the TRANSMP program was intended only as an interim tool until
Fortran-90 was available. This is because advanced Fortran-90 features such as derived
data types and operator extensions permit one to implement multiprecision translation in
a much more natural way. Now that day has arrived — Fortran-90 is currently available on
several computer systems, and it soon will be available from all major vendors of scientific
computers. Accordingly, the author has written a set of Fortran-90 modules that permit
the user to handle MP data like any other Fortran data type.

With the new Fortran-90 based system, one declares variables to be of type MP integer,
MP real or MP complex using Fortran-90 type statements. With a few exceptions, one can
then write ordinary Fortran-90 code involving these variables. In particular, arithmetic
operations involving these variables are performed with a numeric precision level that can
be set to an arbitrarily high level. Also, most of the Fortran intrinsic functions, such as
SIN, EXP and MOD, are defined with MP arguments.

In comparison to the TRANSMP approach, there are a few disappointments. To begin
with, one has to give up the ability to run MP source code, without change, as a standard
single precision or double precision program. Also, features such as read/write statements
are not as elegant in the new system — subroutines must now be called for formatted MP
read and write.

On the other hand, features such as generic functions work much better in the Fortran-
90 version. Also, the coverage of Fortran features is more complete with the Fortran-90
version than with TRANSMP — programmers can now utilize the full power of the Fortran-
90 language in a MP application. Another important advantage of the Fortran-90 approach
is that a very reliable translation is produced, since the process of translation is performed
by the Fortran-90 compiler itself, rather than by the TRANSMP program.

This article gives an overview of this new software, including a brief summary of the
instructions for usage. It also describes an interesting application of this software to math-
ematical number theory, showing how MP calculations can be used to discover new math-
ematical identities.

This software is available by sending electronic mail to mp-request@nas.nasa.gov.
Include send index as either the subject line or the text of the first message to this
address. It is also available by using Mosaic software at the address
http://www.nas.nasa.gov/RNR/software.html.

2. The Fortran-90 MP Translation Modules

The new MP translator is a set of Fortran-90 modules. These translation modules
serve as a link between the user’s program and MPFUN, the library of MP computation
routines. To utilize the MP translation facility, one inserts the following line in the main



program of the user’s application code, as well as in any subprogram that performs MP
operations:

USE MPMODULE

This line must be placed after the PROGRAM, SUBROUTINE, FUNCTION or MODULE statement,
but before any intrinsic or type statement. This USE statement connects the subprogram
with the Fortran-90 translation modules that define the MP datatypes and operator ex-
tensions.

At the beginning of the executable portion of the user’s main program, even if the main
program itself performs no MP operations, one inserts the line

CALL MPINIT

The routine MPINIT sets parameters in the MPFUN library and precomputes x, log(2) and
log(10), which are needed in a number of transcendental function routines.

Three derived types are defined in the translation modules: MP_INTEGER, MP_REAL and
MP_COMPLEX. In an application program, one may explicitly specify MP variables using
Fortran-90 type statements, such as

TYPE (MP_INTEGER) IA, IB, IC
TYPE (MP_REAL) A, B, C, D, E
TYPE (MP_COMPLEX) (Z)

Alternatively, one may implicitly declare variables to be of one of the three MP types by
using an IMPLICIT statement, such as

IMPLICIT TYPE (MP_REAL) (A-H, 0-Z)

MP constants are handled a bit differently than with TRANSMP. These are now spec-
ified as literal constants, i.e. ’1.23456789’. One may directly assign a MP constant to a
MP variable, but if a MP constant appears in an expression, it must be as the argument
to MPINT, MPREAL or MPCMPL, depending on whether it to be treated as MP integer, MP
real or MP complex. Examples:

IA = ’333333333333333333333333333’

A = 1.4142135623 7309504880 168872420 E-10’
B = MPREAL (’1.25’) / N
Z = 2 % MPCMPL (°1.2345’, ’6.7890’)

Note that without the quotes to indicate an MP constant, the integer constant in the first
line would overflow, and the floating constant in the second line would not be converted
with full MP accuracy.

Quotes are not really required in the third line, since 1.25 can be converted exactly with
ordinary arithmetic. However, note that simply writing B = 1.25 / N would not give a



fully accurate result if, for example, N is an ordinary integer with the value 7 (although it
would be fine if N is 8). This is because the division operation would be performed using
ordinary single precision arithmetic, and the inaccurate result would then be converted
to MP and stored in B. The usage of the function MPREAL in the third line insures that
the division is performed with MP arithmetic. This is an example of the care one must
exercise in programming to insure that intermediate calculations are performed with MP
arithmetic when required. In this respect, the new Fortran-90 translation system is like
the FAST option of the TRANSMP program.

The expressions in lines three and four are examples of mixed mode operations. Vir-
tually all such operations are allowed, and the result is of the type that one would expect.
For example, the product of a MP real variable and an integer constant is of type MP real,
and the sum of a complex variable and a MP real variable is of type MP complex. The
only combinations that are not currently allowed are some exponentiations involving MP
complex entities — these are defined only when the exponent is an integer.

Unformatted read and write statements with MP variables in the I/O list, such as
WRITE (11) A, B, are handled as expected. But formatted and list-directed read and
write statements, i.e. WRITE (6, *) A, B, will not produce the expected results for MP
variables. These operations must now be handled using the special subroutines MPREAD
and MPWRITE. The first argument of either routine is the unit number. Arguments 2-10
are the list of MP variables to be input or output. Within a single call to either routine,
the MP variables in the list must all be the same type, either MP integer, MP real or MP
complex. Examples:

CALL MPREAD (5, IA)
CALL MPWRITE (6, A, B, C, D, E)

An example of the format for input or output of MP numbers is
10 © 40 x -3.1415926535897932384626433832795028841971,

On input, the exponent field is optional, and blanks may appear anywhere, but a comma
must appear at the end of the last line of mantissa digits.

By default, only the first 56 mantissa digits of a MP number are output by MPWRITE, so
that the output is contained on a single line. This output precision level can be changed
by the user, either as a default setting or dynamically during execution (see section four).

It should be noted that the Fortran-90 translation modules generate calls to the stan-
dard arithmetic routines of the MPFUN library. If one wishes to utilize the “advanced”
routines, which are intended for precision levels above 1000 digits (see section five), contact
the author.

3. Multiprecision Functions
The functions MPINT, MPREAL and MPCMPL were mentioned in the previous section in
the context of MP constants. These three functions are actually defined for all numeric



argument types, ordinary and MP. The result is MP integer, MP real or MP complex,
respectively, no matter what the type of the argument. Thus one may use MPREAL (A) to
convert the ordinary floating point variable A to MP real.

The corresponding Fortran type conversion functions INT, REAL, DBLE, CMPLX, and
DCMPLX have also been extended to accept MP arguments. The result, in accordance with
Fortran language conventions, is of type default integer, real, double precision, complex
and double complex, respectively. Note that REAL (IA), where IA is MP integer, is not of
type MP real — if that is required, then MPREAL should be used instead.

Many of the other common Fortran intrinsics have been extended to accept MP ar-
guments, and they return true MP values as appropriate. A complete list of the Fortran
intrinsic functions that have been extended to MP is given in Table 1. In this table, the ab-
breviations I, R, D, C, DC, MPI, MPR, MPC denote default integer, real, double precision,
double complex, MP integer, MP real and MP complex, respectively.

Some additional MP functions and subroutines that users may find useful are demon-
strated in the following examples. Here N is an ordinary integer variable, and A, B and C

are MP real.

A = MPRANF ()

B = MPNRTF (A, N)

CALL MPCSSNF (A, B, C)
CALL MPCSSHF (A, B, C)

These calls which produce a pseudorandom number in (0, 1), the N-th root of A, both the
cos and sin of A, and both the cosh and sinh of A, respectively. The above call to MPNRTF is
equivalent to, but significantly faster than, the expression A ** (MPREAL (1) / N). This
is because the latter expression requires log and exp calculations, whereas MPNRTF uses an
efficient Newton iteration scheme. Similarly, the above call to MPCSSNF executes faster than
B = COS (A) and C = SIN (A)), although the results are the same. A similar comment
applies to MPCSSHF.

4. Global Variables

There are a number of global variables defined in the MP translation modules and in the
MPFUN package. These variables, which are listed in Table 2, can be accessed by any user
subprogram that includes a USE MPMODULE statement. The entries in the column labeled
“Dynam. change” indicates whether the values of these variables may be dynamically
changed by the user during execution of the program.

The first three global variables listed in Table 2 are set by the user in PARAMETER
statements at the beginning of the file containing the MP translation modules. MPIPL
is the initial precision level, in digits, and is often the only parameter that needs to be
changed. MPIQU, the initial output precision level, is ordinarily set to 56, although it may
be set to as high as MPIPL if desired. The parameter MPIEP, the initial MP “epsilon” level,
is typically set to 10 - MPIPL or so.

The call to MPINIT at the start of the user’s main program automatically sets initial
values for the next six variables in the list. The final set of global variables in Table 2 are



Function | Arg. | Arg. Function | Arg. | Arg.
Name 1 2 Result | Name 1 2 Result
ABS MPI MPI INT MPI I
MPR MPR MPR I
MPC MPR MPC I
ACOos MPR MPR | LOG MPR MPR
AIMAG MPC MPR | LOG10 MPR MPR
AINT MPR MPR | MAX MPI | MPI | MPI
ANINT MPR MPR MPR | MPR | MPR
ASIN MPR MPR | MIN MPI | MPI | MPI
ATAN MPR MPR MPR | MPR | MPR
ATAN2 MPR | MPR | MPR | MOD MPI | MPI | MPI
CMPLX MPI | MPI | C MPR | MPR | MPR
MPR | MPR | C NINT MPR MPI
MPC C REAL MPI R
CONJG MPC MPC MPR R
Cos MPR MPR MPC R
COSsH MPR MPR | SIGN MPI | MPI | MPI
DBLE MPI D MPR | MPR | MPR
MPR D SIN MPR MPR
MPC D SINH MPR MPR
DCMPLX | MPI | MPI | DC SQRT MPR MPR
MPR | MPR | DC MPC MPC
MPC DC TAN MPR MPR
EXP MPR MPR | TANH MPR MPR

Table 1: MP Extensions of Fortran Intrinsic Functions




Variable Dynam. | Initial

Name Type Change | Value Description

MPIPL Integer No User sets | Maximum and initial precision, in digits.
MPIOU Integer No User sets | Initial output precision, in digits.

MPIEP Integer No User sets | log,, of initial MP epsilon.

MPWDS Integer No 71\.'15212‘2 + 1 | Maximum and initial precision, in words.
MPQOUD Integer Yes MPIQU Current output precision, in digits.
MPEPS MP real | Yes 1QMPIEP Current MP epsilon value.

MPLO02 MP real | No log 2

MPL10 MP real | No log 10

MPPIC MP real | No s

MPNW Integer Yes MPWDS Current precision level, in words.

MPIDB Integer Yes 0 MPFUN debug level.

MPLDB Integer Yes 6 Logical unit for debug output.

MPNDB Integer Yes 22 No. of words in debug output.

MPIER Integer Yes 0 MPFUN error indicator.

MPMCR Integer Yes 7 Cross-over point for advanced routines.
MPIRD Integer Yes 1 MPFUN rounding option.

MPKER Int. array | Yes 0 Array of error options.

Table 2: Global Variables

used in the MPFUN package and assume the values as shown. See [5] for additional details
on the meaning and usage of these variables.

As noted in Table 2, MPNW is the current numeric precision level, measured in machine
words. On IEEE and most other systems, the corresponding number of digits is given by
7.22472 * (MPNW - 1). If one wishes to perform the same computation with a variety of
precision levels without recompiling the translation modules, or if one needs to dynamically
change the working precision level during the course of a calculation, this may be done by
directly modifying the parameter MPNW in the user program, as in

MPNW = 127

But be careful not to change MPNW to a value larger than MPWDS, or else array overwrite
errors may occur. The parameter MPWDS is defined at the beginning of the MP translation
modules with the value MPIPL / 7.22472 + 1, where MPIPL is the user-defined initial
precision level in digits (see Table 2). On Cray vector systems, the constant 7.22472 in
Table 2 and in the above discussion should be replaced by 6.62266.



With regards to the MP epsilon MPEPS, quotes should be used when changing the value
of this variable, as in

MPEPS = ’1E-500’

The quotes here insure that the constant is converted with full multiple precision. Without
quotes, the constant will not be accurately converted, and in fact a constant of such a small
size would result in an underflow condition on IEEE arithmetic systems.

5. The Fortran-90 MPFUN Package

The new Fortran-90 translation modules, like the older TRANSMP program, generate
calls to the MPFUN library, which contains all of the subroutines that perform MP oper-
ations. With the advent of Fortran-90, the MPFUN library has also been updated to use
some of the advanced features of the this language. Among the changes in the new MPFUN
package are the elimination of common blocks and the dynamic allocation of scratch space.
Thus the user never needs to worry about “insufficient scratch space” error messages.

One algorithmic change in the Fortran-90 version of the MPFUN library is the substitu-
tion of the author’s PSLQ integer-relation finding algorithm [8, 2] for the HJLS algorithm
[9] that was used in subroutine MPINRL of the Fortran-77 MPFUN. The PSLQ algorithm
does not exhibit the catastrophic numerical instabilities that are a characteristic of the
HJLS algorithm. With PSLQ), integer relations can be reliably detected when the preci-
sion level is set to only slightly higher than that of the input data.

Another algorithmic change in the Fortran-90 MPFUN is the utilization of an improved
fast Fourier transform (FFT) algorithm [3], which is used by the advanced MP multiplica-
tion routine of MPFUN. This new FFT algorithm, which is variously called the “factored”
or “four-step” FFT, exhibits significantly improved performance on computers that employ
cache memory systems.

That this new FFT scheme is significantly more efficient on modern RISC systems can
be seen from Table 3, which compares the performance of the new Fortran-90 MPFUN
with the author’s previous Fortran-77 MPFUN. These timings were performed on an IBM
RS6000/590 workstation and compare the run time required to compute the constant =
to the specified precision levels (excluding binary to decimal conversion). The numbers
of digits shown in the second column correspond to 2™ numbers of words, which are
convenient precision levels for the FFT-based multiplication routine. Note that the new
MPFUN package is up to four times faster than the old on this computation, even though
the FFT routine only constitutes part of the operations being performed.

One addition to the Fortran-90 MPFUN package is a routine to perform binary to deci-
mal string conversion for extra-high precision arguments. This routine, named MPOUTX,
employs a divide-and-conquer scheme, which together with the extra-high precision multi-
plication and division routines, permits rapid conversion of MP numbers whose precision
ranges from roughly 1000 digits to millions of digits. MPOUTX uses the same calling se-
quence as the existing routine MPOUTC, which suffices for more modest precision levels.



Prec. Level CPU Time
m (Digits) | Old MPFUN | New MPFUN
4 115 0.0039 0.0037
5 231 0.0077 0.0073
6 462 0.0183 0.0172
7 924 0.0494 0.0480
8 1849 0.1251 0.1279
9 3699 0.3094 0.3295
10 7398 0.6668 0.7141
11 14796 1.4613 1.5639
12 29592 3.2861 3.5167
13 59184 13.3865 8.0605
14 118369 55.1227 18.2515
15 236739 150.3923 40.9832
16 473479 393.6824 94.5782

Table 3: Time to Compute 7= on an IBM RS6000/590 Workstation

Extra scratch space is required for MPOUTX, but this space is automatically allocated by
the routine when required.

6. An Application of the Fortran-90 Multiprecision System
In April 1993, Enrico Au-Yeung, an undergraduate at the University of Waterloo,
brought to the attention of the author’s colleague Jonathan Borwein the curious fact that

o] 1 1 2 _2
Z(l—l———l—---—l——) k = 4.59987---
o 2 k
17 1774
T¢W =350
based on a computation to 500,000 terms. Borwein’s reaction was to compute the value of
this constant to a higher level of precision in order to dispel this conjecture. Surprisingly,
his computation to 30 digits affirmed it. The present author then computed this constant
to 100 decimal digits, and the above equality was still affirmed.

Intrigued by this empirical result, the author, J. Borwein and R. Girgensohn have

~

researched several classes of iterated sums. We have termed these Fuler sums, since Euler
first studied them in a letter to Goldbach. One class of Euler sums is the following:
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where h(k) =14 1/2 4 --- 4+ 1/k. By applying the Euler-Maclaurin summation formula
[1], one can show that

1 1 1 1 1
hk) = Ink + — — _
(k) VAR or T e T T20m T 252k0 T 24048
1 691 1 3617
+ - + + O(k™'®). (1)

132k T 32760k12 12k14 8160416

We will use (k) to denote this particular approximation (i.e., (1) without the error term).
Let ¢ be a large integer, and let g(¢) = A™(¢)(t+1)~". By applying the Euler-Maclaurin
summation formula again, one can show that

C

1 1\
sp(m,n) = Z<1+§+”'+E> (k+ 1)~

+k2 ( i)m (k+1)"
= th(k k+1)" +/ t)dt + g(c+1)
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where B, denotes the Bernoulli constants and D denotes the differentiation operator.

This formula suggests the following computational scheme. First, explicitly evaluate
the sum >_5_, 2™ (k)(k + 1)~ for ¢ = 10®, using a numeric working precision of 150 digits.
Secondly, perform the symbolic integration and differentiation steps indicated in formula
(2). Finally, evaluate the resulting expression, again using a working precision of 150 digits.
The final result should be equal to sy(m,n) to approximately 135 significant digits.

The author has performed many computations of this type [2]. The integration and
differentiation operations required in (2) can be handled using a symbolic mathematics
package, such as Maple [10]. The explicit summation of the first ¢ terms, as indicated
above, has been performed using both the author’s TRANSMP translator and the new
Fortran-90 multiprecision system.

Once a highly accurate numerical value of one of these sums has been obtained, one can
ask whether the sum satisfies some simple formula involving basic mathematical constants.
This can be done with an integer relation algorithm, such as the PSLQ algorithm that was
developed by H. R. P. Ferguson and the author [8]. T will present but one example of these
computations here. Consider

[o.e]

1 1\?
sn(2,7) = > <1+§+---+%) (k+1)77
k=1
= 0.009134620577334789370589237677521525240918558016815378 - - -

Based on experience with other constants, J. Borwein and the author conjectured that this
constant satisfies a relation involving the constants ((9), ¢(4)((5), ¢(3)¢(6), ¢(*(3), and

10



C(2)¢(7). When s,(2,7) is augmented with this set of terms, all computed to 135 decimal
digits accuracy, and the resulting 6-long vector is input to the PSLQ algorithm, it detects
the relation (6, —1,3,9, -2, —6) at iteration 46. Solving this relation for s,(2,7), we obtain

the formula

w(27) = 2609) — 3CC05) ~ SEBA6) + 3¢CB) + ()
1 Vi 8 I ... 7’
= 85(9) - @5(5) - @5(3) +3¢ (3) + KCU)

(recall that ((2r) = (27)**|Ba.|/ [2(2n)!]). See [2] for full details and numerous other
experimentally discovered results of this type.

Certainly such computation results, even if confirmed to very high precision, do not
constitute formal proofs of the resulting identities. However, since these computations were
first performed, formal proofs have been found for several of these experimental results [6].
The experimental results thus pointed the way to the formal results.
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